21 March 2017

Three Breakthrough Technologies That Will Change Medicine

The Massachusetts Institute of Technology (MIT) publishes an annual list of 10 Breakthrough Technologies. Three innovations from this year’s list promise to have a dramatic impact on the future of medicine.

Brain Implants that Reverse the Effects of Paralysis

In recent years, brain implants have enabled lab animals and even a few people to use thoughts to control computer cursors or robotic arms. According to the 2017 MIT report,  researchers are “taking a significant next step toward reversing paralysis once and for all” using what French neuroscientist Grégoire Courtine calls a “neural bypass.” Wireless implants transmit electrical impulses from brain to spinal cord, bypassing damaged parts of the central nervous system and enabling movement of limbs once paralyzed due to spinal cord injuries. Courtine and a team of researchers at a Swiss university have used the implanted electronics to restore mobility of a partially paralyzed macaque monkey in hopes of future applications with humans.

A team at Cleveland’s Case Western Reserve University placed two of the same type of implants used in the Swiss experiment in the brain of a middle-aged quadriplegic volunteer who, on his own, could not move any part of his body other than his head and a shoulder. The implants are smaller than a postage stamp and “bristle with a hundred hair-size metal probes that can ‘listen’ as neurons fire off commands.” The Case team also inserted more than 16 fine electrodes into the muscles of the volunteer’s arm and hand. According to the MIT report, in videos of the experiment, “the volunteer can be seen slowly raising his arm with the help of a spring-loaded arm rest, and willing his hand to open and close. He even raises a cup with a straw to his lips.” This transformational technology is expected to be available in 10 to 15 years.

Next-generation Gene Therapy

For decades, researchers have been pursuing the idea of gene therapy—what the MIT report calls the use of “an engineered virus to deliver healthy copies of a gene into patients with defective versions”—with mostly disappointing results. Now, researchers have solved some of the puzzles that caused many earlier gene therapies to fail. Scientists are “using viruses that are more efficient at transporting new genetic material into cells” to develop the next generation of gene therapies—or “gene therapy 2.0”—to treat patients with rare hereditary diseases. 

European regulators have approved two of the treatments. One is Strimvelis, for treating children with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). The other is Glybera, for treating patients with lipoprotein lipase deficiency (LPLD), a rare disease that causes fat to accumulate in the blood and increases the risk of acute and recurrent pancreatitis. 

In the United States, one of Spark Therapeutics’ gene therapies for inherited retinal diseases (IRDs) is in phase III clinical trials. The company’s hemophilia B therapy, SPK-9001, is currently in an ongoing phase i/ii clinical trial and recently received breakthrough therapy and orphan product designations from the U.S. Food and Drug Administration. Another promising gene therapy in development could lead to a cure for hemophilia and enhance healing in patients suffering from epidermolysis bullosa, an excruciatingly painful and sometimes fatal hereditary skin disease. 

According to the MIT report, researchers are conducting clinical trials for gene therapies for some 40 to 50 diseases. “Fixing rare diseases, impressive in its own right, could be just the start.” 

The Human Cell Atlas

An international consortium of scientists is being assembled to develop the first comprehensive map of human cells. Biologists, clinicians, technologists, physicists, computational scientists, software engineers and mathematicians from the U.S., U.K., Sweden, Israel, the Netherlands, and Japan will be collaborating on the construction of what the MIT report calls “biology’s next mega-project”—a “cell atlas” that catalogs and maps the 37.2 trillion cells of the human body. 

The Human Cell Atlas website explains the significance of this massive, ambitious and unprecedented undertaking. “A complete Human Cell Atlas would give us a unique ID card for each cell type, a three-dimensional map of how cell types work together to form tissues, knowledge of how all body systems are connected, and insights into how changes in the map underlie health and disease. It would allow us to identify which genes associated with disease are active in our bodies and where, and analyze the regulatory mechanisms that govern the production of different cell types.”

The MIT report calls the future genomic reference map “a technological marvel that should comprehensively reveal, for the first time, what human bodies are actually made of and provide scientists a sophisticated new model of biology that could speed the search for drugs.”

According to the report, this new type of mapping is possible thanks to the confluence of three technologies: 

  • Drop-Seq—described in the abstract of a 2015 Cell article by Evan Z. Macosko and his colleagues as “a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell’s RNAs, and sequencing them all together.” 

  • Ultra-fast, extremely efficient sequencing machines that can decode and identify the genes active in single cells “at a cost of just a few cents per cell. One scientist can now process 10,000 cells in a single day.”

  • Innovative labeling and staining techniques that “can locate each type of cell—on the basis of its gene activity—at a specific zip code in a human organ or tissue.”

Among the key supporters of this project are the U.K.’s Wellcome Trust Sanger Institute, the Broad Institute of MIT and Harvard in Massachusetts, and the new Chan Zuckerberg Biohub in California funded by Facebook CEO Mark Zuckerberg and his wife, Priscilla Chan. Zuckerberg and Chan made the Human Cell Atlas project “the inaugural target of a $3 billion donation to medical research,” according to the MIT report. The human cell atlas should be available in five years.